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Abstract. This study describes fragmentation of silicon clusters of size N ≤ 40. Fragmentation is produced
by the increase of the kinetic energy Ek of the nuclear system and a time-dependent Hartree-Fock method,
with a semi-empirical Hamiltonian is used for the evaluation of the transient ensuing the energy input.
A typical channel of fragmentation has been observed which consists on the emission of small (from 1
to 5) groups of atoms. Due to these losses, the fragmentation remnants for N ≥ 20 reach a size equal to
1/2–1/4 of the original one. These trends are in agreement with the experimental ones. Furthermore the
critical energies obtained from fragmentation calculations are discussed in the light of the binding energies
evaluated for the stationary state.

PACS. 21.60.-n Nuclear structure models and methods – 31.15.Ct Semi-empirical and empirical
calculations (differential overlap, Hückel, PPP methods, etc.) – 79.60.Jv Interfaces; heterostructures;
nanostructures

1 Introduction

In the field of clusters there is a considerable interest for
the processes leading to fragmentation. The thrust of these
studies is to find structures with new and unforeseen prop-
erties by mapping regions of the configurational space dif-
ferent from the stationary ones.

Much work has been devoted to silicon clusters. In fact,
silicon is of particular importance for the microelectronic
industry and therefore a detailed knowledge of the phys-
ical and chemical properties of the clustered state of this
material is highly desirable. In addition, silicon clusters
seem to hold significant potentialities for photolumines-
cent and quantum devices and therefore the effort in this
field is intensive. Studies on fragmentation of silicon clus-
ter ions with a size in the range 10–100 showed the emis-
sion of large fragments well above the monomer size [1–5].
At variance with it, evaporation of monomers and dimers
has been recently reported for nanometric clusters [6].

This difference raises an important question. Are the
fragments observed at small size the components of the
cluster ground state or are due to the reaggregation of
monomers and dimers produced upon fragmentation? The
traditional interpretation (see [7,8] and the references
therein) is that the fragments are subunits of the cluster
structure and therefore fragmentation is a fundamental
tool to investigate structural properties of clusters. How-
ever studies on cluster melting invariably show that even
a modest energy input leads to a complex structural evo-
lution where the memory of the initial state is rapidly
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lost. Obviously, the rigorous solution of this problem re-
quires the evaluation of the entire fragmentation tran-
sient. In spite of the development of very efficient ab initio
and DFT calculations, the evaluation of time-dependent
effects is still a major computational problem. In this
study, which complements previous studies on fragmenta-
tion of clusters formed by lead and tin [9], fragmentation
is considered from both a physical and a methodological
standpoint. On one side, in fact, we attempt to gain insight
on the process of fragmentation by its direct simulation.
The study of the cluster evolution during the fragmen-
tation transient allows the assessment of the structure of
fragments and of the energy needed for fragmentation. On
the other side, the functional dependence of this energy on
the cluster size is compared with the binding energies of
the ground state, which are commonly believed to repre-
sent accurate indicators of the cluster stability. This rep-
resents the methodological aspect of the study.

The paper is organized as follows. Section 2 describes
the equations governing the dynamical evolution and the
fragmentation conditions. Section 3 illustrates the prop-
erties of the ground state obtained from the minimization
of the total energy. In this paragraph a brief comparison
with other theories and with experiments is also made.
The dynamics of fragmentation is shown in Section 4.

2 Computational details

In fragmentation studies either a classical representation
or quantum mechanical methods (QM) are used. The
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classical approach, based on statistical methods or on
molecular dynamics, is the one more commonly adopted
and has been widely applied to clusters of rare-gas and
noble metal atoms and fullerenes up to the size N ∼ 60
(attained for argon clusters and fullerenes [11]). Generally,
QM are mixed schemes combining classical mechanics for
the nuclei with a quantum mechanical treatment for the
electrons. Owing to their great complexity, these methods
appear to be at a formative stage and have been gener-
ally used for simple elements or small clusters (a detailed
list of references on experiments on cluster fragmentation
and melting and on the related theoretical approaches is
reported in [9]).

It is thought that the implementation of a time-
dependent QM method represents one of the methodolog-
ical contribution of this work. The method has already
been described in [9]. Here it is only recalled that it is
based on the time-dependent Hartree-Fock formulation,
as presented in [10], and the main assumptions of the cal-
culations are as follows:

(i) the nuclear dynamics is described by classical
dynamics,

(ii) a LCAO representation is used for the electron wave-
function. This wavefunction is evaluated under adia-
batic assumptions at the end of the nuclear motions.
In a one-dimensional notation the forces needed for
nuclear dynamics are given

∂EHF /∂Xi =
∑

µν

Pµν(∂Hµν/∂Xi)

+ 1/2
∑

µνλσ

PµνPλσ(∂/∂Xi)(µλ|νσ)

−
∑

µν

Wµν(∂Sµν/∂Xi) + ∂Vnuc/∂Xi (1)

where µ, ν indicate electronic orbitals. The matrix ele-
ment Hµν is the one-electron Hamiltonian (kinetic and
potential energy) due to the electrostatic field of the nu-
clei. Pµν , Sµν and Wµν are the element of the bond-order,
density and energy matrix, respectively.

In time-dependent calculations the nuclear coordi-
nates Xi are evaluated at each time step dt using equa-
tion (1). After this step, the electron wavefunction is
constructed by the minimization of the HF energy in the
cluster structure determined by the nuclear motions. This
allows a new evaluation of ∂EHF /∂Xi and hence a new
cycle at t + dt.

The use of classical dynamics allows an unambiguous
identification of the parameters of the nuclear dynamics.
The displacements and the velocities of the atoms have
their usual meaning, as in classical mechanics, and the
cluster kinetic energy is given by

∑
N MV 2

i /2, where Vi =
∂Xi/∂t, i = 1, 2, 3 are the Cartesian velocity components
of the i atom.

The fragmentation conditions are taken from [12].
Each fragmentation event starts from the cluster ground
state by applying the kinetic energy Ek to the entire clus-
ter. Prior to fragmentation a normal mode analysis is car-
ried out and the energy of each mode is scaled so as to

obtain the wanted Ek for the whole cluster. The simulation
is continued as a constant energy simulation for a duration
of about 1000 fs. Generally, numerical errors are limited to
the initial 50–100 fs during which a large overshoot of the
potential energy may occur in response to the input kinetic
energy. This effect is healed by the continuous rescaling of
the time step dt and from approximately 150 fs on the
error in the total energy conservation is below the sixth
significant figure. These initialization errors are of no con-
sequence on fragmentation. In fact, important structural
modifications of the cluster shape start at approximately
200 fs from the beginning of the transient (see below).

The HF integrals in equation (1) are calculated at
semiempirical level using the Modified Neglect of Diatomic
Orbital scheme with AM1 parametrization using MOPAC
software [13–15]. The AM1 parametrization is based on
atomic and molecular data and it has been often compared
with experiments in studies within the chemical literature.
A recent analysis and discussion is presented in [16]. The
use of this Hamiltonian represents a significant improve-
ment over the original formulation [10] where a simple Ne-
glect Differential Diatomic Overlap method was applied.

3 The cluster ground state. Binding
and emission energies

To set the stage briefly, we recall some experimental and
theoretical data on silicon clusters. The shape of clusters
with size in the range 10 is now well assessed [17]. At
N ≥ 4 the clusters acquire a three-dimensional shape and
grow by the accretion of capping terminations placed at
the corners or at the centers of the faces. Though this
trend appears in both HF and LDA, the details of the
cluster structure are sensitive to the calculation method.
Up to N ≤ 60 the polymorphism, which is typical of the
bulk state of silicon, leads to an explosive growth of the
number of possible structures, often linked in families with
a common mode of growth. Generally these clusters have a
cage-like structure whose external rings are reminiscent of
either fullerenes or crystalline silicon [7,18,19]. From the
experimental side, ion mobility measurements (see [7,8,19]
and references therein) indicate that up to the size N = 35
cation clusters track the prolate growth pattern also ob-
served for germanium and tin. Above this size the clusters
gradually rearrange themselves towards a nearly spherical
geometry.

AM1 calculations for the size N ≤ 40 are reported
in Tables 1 and 2. In order to compare the calculations
with the shapes reported in the literature, the clusters
were structurally characterized on the basis of their aver-
age bond length Rb and of their aspect ratio, i.e. the ratio
between the inertial moments calculated with respect to
two in-plane equatorial axes. However the property more
relevant in the context of this study is stability. In the
cluster literature the parameters commonly adopted to
describe this quantity are the binding energy Eb and the
energy Ee(m) required for the emission of a subunit of
size m (thereafter indicated as emission energy). These
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Table 1. Properties of silicon clusters. AM1 calculations and
literature results Eb, Rb and Ip indicate the binding energy, the
average bond length and the ionization potential, respectively.
The source of references for N ≤ 10, N = 23 and N = 28
is [17–19], respectively.

literature results: experiment

cluster structure Eb Ip Rb

(eV/atom) (eV) (Å)

Si2 - –1.61 7.40 -

Si3 - –2.56 - -

literature results: theory

cluster structure Eb Ip Rb

Si2 –1.58 7.50 2.23

Si3 isosceles –2.56 7.90 2.43

triangle

Si4 rhombus –3.31 7.60 ∼2.35

Si10 C3v –4.32(–3.92) - -

Si23 –3.75

Si28 –3.98 ∼2.40

AM1 calculations

cluster structure Eb Ip Rb

(eV/atom) (eV) (Å)

Si2 –1.46 8.60 2.28

Si3 –2.79 8.30 2.27

Si4 –3.15 8.30 2.10

Si10 - –3.66 7.39 2.44

Si23 - –4.15 7.14 2.64

Si28 - –4.15 7.11 2.39

Si36 - –4.25 7.63 2.36

energies can be obtained from the cluster energy E, eval-
uated from the stationary minimum, according to

Eb = (E(N) − NESi)/N
Ee(m) = E(N) − E(N − m) − E(m) (2)

where E(N) is the total energy in the cluster of size N
and ESi is the energy of the free atom.

Structural parameters and binding and emission en-
ergies (absolute values) for m = 1, 2 are reported in Ta-
bles 1 and 2. For N ≤ 10 the more common structural
patterns (i.e. triangle, rhombus, and polytetrahedal) were
found together with other structures of a linear, cyclic, or
mixed polytetrahedal and cyclic, shape. The aspect ratio
at N = 36 indicates the occurrence of prolate structures
at N in the range 30. The size dependence of Eb shows
a progression towards the bulk value while the parallel
decrease of Ip suggests a distributed and/or delocalized
charge. As for Eb, the size dependence of Ee indicates an
increased stability with the increase of the cluster size.

Table 2. Properties of silicon clusters. AM1 calculations.
Ee(1), Ee(2) and Ee(dimer) indicate the energy needed for
the emission of one, two monomers or one dimer, respectively.

properties of fragmentation

cluster Eb aspect ratio Ee(1) Ee(2) Ee(dimer)

(eV/atom) (eV) (eV) (eV)

Si10 –3.66 1.25 4.37 7.61 1.95

Si23 –4.15 1.26 5.78 8.47 2.80

Si28 –4.15 2.54 6.22 10.6 7.65

Si36 –4.25 2.00 4.73 9.82 4.16

Furthermore the comparison of the values of Ee for emis-
sion into the channel of monomers and dimers shows that
the emission of a subcluster of size m is energetically fa-
vored over the one of m monomers. This is not counterin-
tuitive as the first of these channels does not require the
additional energy of m separate fragmentation processes.

To conclude this section, it is underlined that the lim-
ited comparison performed in Table 1 indicates a constant
trend towards overbinding at the larger sizes. Quantita-
tively, the divergences with respect to literature data fall
in the range 10–15%. These results are encouraging if one
considers that a parametrized Hamiltonian is a rather un-
refined approach. In addition, the study of fragmentation
showed that the cluster evolution is chiefly determined
by the cluster size rather than by the details of its struc-
tural properties. Therefore an inaccurate evaluation of the
ground state is of scarce significance in the context of this
work.

4 Fragmentation

Literature results offer some hints on general properties
of fragmentation. Studies on rare-gas, alkaline and noble
metals and fullerenes indicate that for Ek noticeably lower
than the bulk melting temperature the cluster acquires a
roto-vibrational energy and its shape oscillates between
structures with a remarkably different shape. This stage
does not imply a considerable alteration of Eb. However
the increase of Ek generates structures with a lower bind-
ing strength and promotes fragmentation. The fragmenta-
tion channels have a complex dependence on the element
forming the cluster, on the cluster size and on the tech-
nique adopted to obtain fragmentation. Systematic stud-
ies on these parameters are scarce and a general remark is
that fragmentation, as all dynamical phenomena, is much
less understood than its stationary counterparts. In the
case of silicon early studies [1–4] showed that the most
prominent species obtained from fragmentation of the ion-
ized clusters Si+N , with N from 2 to 12, are Si+6 and Si+10.
More recent results [5,6] indicate that this behavior ex-
tends up to N = 100 while nanometric clusters preva-
lently evaporate monomers and dimers. From a theoretical
point of view, molecular dynamics simulations using the
Car-Parrinello method show that clusters with N ≤ 12
acquire a liquid-like structure when heated to a tempera-
ture of some tenths of eV [20].
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Fig. 1. The structure of Si10 for t = 0, 300 and 600 fs. Ek =
2.0 eV/atom. The darker spheres show the cluster ground state.
The scattered dimers and trimers on the figure margins show
the final stage of fragmentation.

The quantities addressed by the simulations are the
evolution of the cluster shape and the minimum en-
ergy Ek required for fragmentation (thereafter indicated
as Dynamical Fragmentation Energy, or DFE). For the
evaluation of DFE two sets of calculations were made for
each size. In the first series a large mesh of Ek values (steps
around 0.2 and 0.5 eV/atom) was used to detect fragmen-
tation. Afterwards, Ek was finely binned with a step of
0.05 eV/atom starting from the energy where fragmen-
tation was first observed. Fragmentation was assumed to
occur when some cluster atom was carried at a distance
3–4 Å larger than the maximum internuclear distance in
the cluster ground state.

The calculations showed that fragmentation occurs
with the mode of a liquid droplet [21]. Accordingly, the
fragmentation transient consists on two stages, i.e. incu-
bation and formation of fragments. During the first stage
the potential and kinetic energy intraconvert and a sub-
stantial modification of the cluster shape derives from the
lowering of its potential energy. Depending on the imbal-
ance between kinetic and potential energy, a second stage
follows during which the cluster acquires an even more
fluxional shape till small fragments are carried at a per-
ceptible distance from the original cluster body.

Illustrative examples of this evolution are given in Fig-
ures 1 and 2, which presents a 3D and a 2D view, respec-
tively, of successive stages of fragmentation for the size
N = 10. The view in Figure 1 shows the displacements
and the deformation precursor of fragmentation (light cir-
cles) and the formation of scattered dimers and trimers
at the completion of the process. In Figure 2 the tran-
sient is started with Ek below and above DFE (Figs. 2A
and 2B, respectively). In these plots the lines are drawn to
show the cluster perimeter and maximum size. Therefore

there is no correspondence between these lines and bond
lengths. This presentation shows an expansion of the orig-
inal cluster shape according to an approximate Lissajous
figure, which suggests repulsive interactions and ballistic
motions. The effect is perceptibly larger at the higher Ek

(Fig. 2B). In this case scattered groups of atoms, con-
taining up to 5 atoms, are formed at t ∼ 600 fs. In the
figure the sites of these atoms are marked by the darker
ellipses to underline the analogy with the separated, cap-
illary waves formed by the evolution of a liquid droplet.

A noticeable feature of the fragmentation transient is
its irregular evolution. For instance, in Figure 2 the ampli-
tude of the cluster dilation in the time interval 500–600 fs
is comparable to the one occurring in all its precedent
history. Further evidence on this irregular behavior is of-
fered by Figure 3, which shows the evolution of Si28 at
t = 500 fs for Ek = 0.15 eV/atom. A considerable reshap-
ing is observed even for this cluster which has a compara-
tively large size. A further interesting effect is the forma-
tion upon fragmentation, of a more compact, and therefore
more robust, structure. This state is however metastable
and decays in time or under the effect of a small additive
input energy.

The calculations reported above resume the main fea-
tures of fragmentation as observed in this study, i.e. the
fragmented structures consist of a compact body sur-
rounded by detached groups of atoms of size N ≤ 5. At
the smaller size (Fig. 1) the cluster is entirely dismembered
into these small fragments. These results are limited to the
duration of the simulations, i.e. approximately 1000 fs, and
no attempt has been made to track reaggregation of the
small subclusters among them or with the parent clus-
ter. However two features were found to be common to all
transients. In the first place, a constant characteristic of
both the fragments and the parent cluster is a profound
structural change with respect to the ground state. In the
second place no obvious structural connection was found
among fragments of size N = 3, 4, 5 and the shape of the
stationary clusters of the same size.

The relationship between the characteristic energies,
dynamical and stationary, is illustrated in Figure 4. In this
figure the energies are normalized to Eb to make the con-
nection with the cluster cohesion more transparent. The
noticeable feature of these plots is the low value of DFE
in comparison with the Ee, though the size dependence
is generally similar. The physical ground underlying this
effect is the deformation of the cluster connectivity and of
its bonding mode during the transient. This leads to im-
portant changes of the barrier toward fragmentation with
respect to its stationary evaluation.

As a concluding remark, though divergences with ex-
periments are observed, also consistent results are found.
This seems important, if one considers the complexity of
QM time-dependent methods. In fact, the fragment sizes
N = 6, 10 observed in experiments are not in contradic-
tion with the fragmentation pattern described above. In
the frame of our simulations these clusters would be either
the remainings of the original clusters or the results of the
reaggregation of smaller clusters formed by fragmentation.
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Fig. 2. Plane-view of the evolution of the clusters Si10 for the times shown. A: Ek = 2.0 eV/atom. B: Ek = 7.0 eV/atom.

Fig. 3. Si28 at t = 0 and t = 500 fs for Ek = 0.5 eV/atom.
The darker spheres show the cluster ground state.

Furthermore the dissociation energy, deduced from frag-
mentation experiments, decreases from above 4 eV at
N = 10 to 2.5 eV at N = 20 [7]. In agreement with the
experimental asymptote at large size, the value of DFE at
N ≥ 20 is approximately equal to 2 eV (Fig. 4). However
its value at small N is still in the range 1 eV and there-
fore considerably lower than the experimental one. As for
the stationary energies reported in the previous section,
this failure is attributed to the inadequacy of the AM1
parametrization of reconstructing subtle effects of the size

Fig. 4. The functional dependence of the emission energies
and of DFE on size.

on Eb. This does not invalidate the meaning of the results
presented above.

5 Conclusions

In conclusion, this study shows the evolution of small sil-
icon clusters under the effect of an external energy input.
No claim is made that all possible channels of fragmenta-
tion have been identified. Polymorphism is a known prop-
erty of clusters and it plagues fragmentation as any other
property of these structures. Under the given fragmenta-
tion conditions, the simulations suggest the formation of
fragments above the monomer size, which is in agreement
with the experimental trend.
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